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Abstract. A thermodynamic observable is approximately additive under the decomposition 
of the volume. This property is of particular relevance to disordered systems. If scaled 
hy the size of the system (A’) a thermodynamic observable converges with probability one 
to a non-random limit as N + m  inasmuch as one may apply the ergodic theorem. We 
present a simple argument to prove that the density of states in the Anderson model is 
a thermodynamic observable. Both diagonal and off -diagonal disorder are discussed, and 
the relation to the replica method is indicated. 

1. Thermodynamic observables 

Randomness has added a new feature to the study of physical systems. Whereas a 
regular system gives rise to processes with reproducible answers, a random system 
has observables which vary when we go from one sample to another. More precisely, 
when we determine the outcomes ai  of a sequence of experiments on the observable 
A ,  we have in general ai # ( a ) .  That is, the ai differ from their mean value and we 
may get another answer if we go from ai to ai+l.  

On the other hand some observables may become non-random as the size of the 
system goes to infinity ( N  + CO). These we call self-averaging observables. So A is a 
self-averaging observable if the difference between ai and ( a )  becomes arbitrarily 
small as N + 03. An example is provided by the free energy per site, N - ’  In 2,. See 
a previous paper (van Hemmen and Palmer 1982). 

One may wonder, however, what is the mechanism behind self-averaging. In this 
paper we shall isolate a property which is common to most self-averaging observables: 
at ‘minimal’ cost we can break them up into many independent parts which have the 
same distribution as the original observable as N+m. Such an observable we call 
thermodynamic. We express this more clearly below. 

A thermodynamic observable, say WN, is to be associated with the size N of the 
system. N may be the number of spins or, in the Anderson model, -the number of 
lattice points contained in a certain volume. We imagine the system to be split up 
into many disjoint subsystems labelled by an index j and, for the moment, we fix the 
size M of each of the subsystems. Then WN is approximately additive under the 
decomposition of the volume, 

w N = C  w$+R,  
i 

where the W $  are independent, identically distributed random variables and RN is 
typically an error term which stems from neglecting the interaction between the 
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subsystems; RN is such that N-'RN is small as M is large. We now send first N ,  then 
M to infinity. By the law of large numbers N-' WN converges to a limit which does 
not depend on the specific random configuration one has taken and, hence, N-'  WN 
is self-averaging. In fact, the convergence is thermodynamic. The reader may consult 
van Hemmen and Palmer (1982) for a definition of this notion, which implies that 
the large-volume limit N +a and the replica limit n + O  may be interchanged. For 
the moment we need not be more precise since keeping in mind N-' In ZN as a typical 
example suffices throughout what follows. 

Recently (Pruisken and Schafer 1981) the replica method was used to elucidate 
the localisation problem associated with the Anderson (1958) model. However, the 
validity of the replica method remains an open problem. It is therefore worthwhile 
to study the density of states in the Anderson model (prior to the localisation) and 
to show that it is a thermodynamic observable. This will be done in the present paper. 
In contrast to Pastur (1973) and Fukushima et a1 (1975) we can dispense with the 
restriction to diagonal disorder and are able to handle off -diagonal disorder as well. 
Moreover, the relation to the replica method becomes particularly transparent. 

The key to our method is a peculiarity in a theorem of Ledermann (1944, see also 
van Hemmen and Vertogen 1975) which apparently has been overlooked up to now: 

If in a Hermitian matrix the elements of p rows and their corresponding columns 
are modified in any way whatever, provided that the matrix remains Hermitian, the 
number of eigenvalues, which lie in any interval, cannot increase or decrease by more 
than 2p. 

In § 2 we define the Anderson model, formulate the main theorem, and prove it. 
As a simple corollary we obtain an explicit formula for the integrated density of states 
in § 3. A discussion is to be found in § 4.  

2. The Anderson model 

The Anderson model describes one electron hopping on a d-dimensional cubic lattice 
and experiencing the influence of a random potential V. Its Hamiltonian is given by 

Z = - A + V  (1) 

where A is the discretised Laplacian 

describing the hopping from a site i to its nearest neighbours j .  The operator -A 
is the lattice analogue of the kinetic energy. The randomness is contained in the 
potential V 

(Vx)i = 5zxi (3) 
i.e. there is only diagonal disorder. The li are independent, identically distributed 
random variables whose distribution need not be specified here. Note that the 
Hamiltonian Z describes one particle only. 

Theorem. Let AN be a sequence of cubes of increasing volume which finally fill the 
whole space, let RN be the restriction of Z to AN (supplied with some boundary 
condition), and let ~ ( Z N )  denote the set of eigenvalues of XN.  Then the integrated 
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density of states of %' 
1 

F ( A ) =  lim - - # { A i ~ ~ ( % ' N ) :  A j S A } =  lim F N ( A ; &  
N-w N N-CC 

exists and does not depend on 6 with probability one. Hence 

F ( A )  = lim (FN(A;  6 ) )  
N-w 
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(4) 

where the angular brackets denote an average over the ti. Furthermore, the conver- 
gence in (4) is thermodynamic, so that the replica limit n + 0 and the large-volume 
limit N + 00 may be interchanged freely (van Hemmen and Palmer 1979, 1982). 

For the proof of (4) and (5) we choose a sequence of cubes AN of increasing size 
N. The side of a cube is taken to be km, so that N = ( k m ) d .  We pick a specific 
configuration 6, fix A, and associate FN(A ; 6) = N-'  4+ {Ai  E A z  S A }  with 
N-' I n z N .  

Suppose first that d = 1. Then N = km, and %'N is a matrix 

%'N 

which we imagine to be split up into k blocks of size m. If the -1  outside the blocks 
(encircled in the diagram) were not there, then X N  would decompose into a direct 
sum of non-interacting Hamiltonians 9tJ, which belong to disjoint regions, say A', 
1 sj s k, and the spectrum of XN would be the union of the spectra of the XJ ,  i.e. 

k k 

Z N  = @ 8 j a ( % ' N )  = U a ( 3 ) .  
1=1 j = 1  

This decomposition may be obtained if we modify X N  by deleting the -1 outside the 
blocks. (In the case of periodic boundary conditions we also have to delete two matrix 
elements in the top right-hand and bottom left-hand corner.) Since we modify at 
most ( k  + 1) rows of the matrix %'N together with their corresponding columns, the 
number of eigenvalues less than or equal to A cannot increase or decrease by more 
than 2 ( k  + 1) (Ledermann 1944; see also van Hemmen and Vertogen 1975, $ 4 ) .  
Moreover, the densities of states in the disjoint regions A' correspond to independent, 
identically distributed random variables. With this idea in mind we turn to the general 
case and consider a subdivision of AN into K = k d  disjoint subcubes AJ of side m and 
M = m d  sites each; j = 1, . . . , k d .  We modify XN at the borders of the subcubes so as 
to decompose it into k non-interacting Hamiltonians %'(A'). Using Ledermann's 
theorem we then find 
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where Si is 6 restricted to the subcube A’& AN and R N  is a surface term; N - ’ R N  = 
O(m-’). Equation ( 6 )  may be compared with equation (9) of van Hemmen and Palmer 
(1982). The FM(A ; tj) ,  1 < j  s kd, are independent, identically distributed random 
variables. The theorem, including thermodynamic convergence, now follows by send- 
ing first K, thus N ,  and then M to infinity. 

Two extensions deserve mention. First, of-diagonal disorder does not change the 
above argument. Second, for (4) and (5) to hold the stochastic variables ti need not 
be independent. Instead of independence it would suffice to require that the process 
be homogeneous and ergodic (Walters 1975). 

Except for the thermodynamic convergence, the theorem above was first proved 
by Pastur (1973) for the special case of the Schrodinger equation in R3; see also 
Fukushima et a1 (1975). Pastur’s proof needs the Feynman-Kac formula and, there- 
fore, cannot accommodate the case with off -diagonal disorder-in contrast to the 
present approach. We now want to obtain an explicit formula for F(A) .  

3. The density of states reconsidered 

We need some definitions. Let D(-,,A](x) be one for -00 < x S A ,  and zero for x > A .  
Define the spectral family of %’ and X N  by 

E A  = l(-a,A](x) (7) 

E? = &a3,A](xN). (8) 

and 

Both depend on the randomness, i.e. 6. We have 

The proposition below is also valid for off-diagonal disorder, but for the sake of 
definiteness we consider the Anderson model (1) and assume Iti 1 s B. 

Let the inner product Zn f;lg, between two elements f and g of r 2 ( Z d )  be denoted 
by (f, g ) .  Finally, let us write for the sequence on Zd which is one at the site j and 
zero elsewhere. The Si form a complete orthonormal set. 

Proposition. Let 

F(A ) = lim (FN (A ; 6)). 
N - w  

Then 

FiA 1 = ((So, EA~o) )  (1 1) 
at each A at which F is continuous. As in ( 3 ,  angular brackets denote an average 
over the randomness. 

Before turning to the proof, I would like to give equations (10) and (11) some 
intuitive appeal. For a finite system (N < 00) the density of states is given by 
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which is equation (9) with N as the number of sites in AN. As N + 00 we expect that 
(Si, E r a j )  approaches (6, EASi), at least at all continuity points A of EA, and thus 

by the ergodic theorem (Walters 1975). In this way we would have understood directly 
that the integrated density of states F ( A )  exists with probability one and does not 
depend on the specific random configuration 6. As a convenient by-product we should 
have obtained an explicit formula for F which relates it to the average of a quantity 
containing X, the Hamiltonian of the infinite system. Such a representation may be 
of advantage in estimating F(A) .  However, though equation (11) is correct, the 
simplicity of the argument above is a bit specious. There is no uniform estimate of 
/(Si, EySi) - (Si, EASj)( and thus we have to proceed more indirectly. 

Since the integrated density of states is a thermodynamic observable (§ 2), the 
limit of FN(A)  = (FN(A ; 6)) as N + 00, i.e. the function F, is well defined for any A .  
Moreover F(-co) = 0, F ( + ~ o )  = 1, and A I  s A Z  implies 

So F is the point-wise limit of a sequence of distribution functions (Ash 1972) and 
it would be a distribution function itself if it were right continuous. But it is continuous, 
except for at most countably many points where it may jump. There we modify F so 
as to be right continuous, and call the modification F,.. Then F+ is a distribution 
function which is the limit of FN at each A at which F, is continuous (that is, equals 
F ) .  Hence (Ash 1972, Q 4.5.4) 

r + m  r+m 

for all bounded continuous f .  To prove our proposition it suffices to prove equality 
of F+ and ((SO, EASo)), the latter also being a distribution function. 

Let ,!'(AN) be the set of all sequences with coordinates in AN only; plainly (g, g)  < 03 

for any g in / ' ( A N ) .  The trace on 12(AN)  may be written either as a sum over sites or 
as a sum over eigenstates of X N .  Thus 

As N + 03 the Ledermann theorem implies that we may assume periodic boundary 
conditions for XN. Averaging (14) and using the translation invariance of 
((Si, exp(itXN)Sj)) as a function of j we then obtain 

+, 
((So, eitzN&,))= e'" dFN(h). J- m 

And sending N to infinity we find, using (13), 

Whatever 5, (SO, exp(itXN)So) converges to (So, exp(itX)So) (Reed and Simon 1972). 
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Since the latter may be written exp{itA} d(So, EASo), we end up with? 
+m +g: 

e"' d((S0, EASo)) = 

By the uniqueness of the Fourier transform the proposition follows. It was announced, 
without proof, by Fukushima et a1 (1975). Part of the present argument has been 
patterned after a suggestion by Fukushima (1978). 

4. Discussion 

The spatial structure of the Hamiltonian X is of prime importance in showing that a 
certain observable related to X, such as the free energy or the density of states, is 
self -averaging or thermodynamic. If the observable is (approximately) additive under 
the decomposition of the volume and the randomness of the system is determined by 
a homogeneous and ergodic stochastic process, all we can say is that the observable 
is self-averaging. That is, the behaviour of the observable becomes non-random as 
N + 03. The limit N + 03 idealises the macroscopic size of the system we are interested 
in. To obtain the slightly stronger notion of thermodynamic convergence we need to 
assume a bit more; for example, disjoint regions are stochastically independent. The 
proof of the additivity itself depends on the observable whose behaviour we want to 
predict or verify. In the case of the free energy the main tool was the Bogoliubov- 
Peierls inequality, in the present situation we could take advantage of the Ledermann 
theorem. 

The importance of an observable becoming non-random as N + 03, in spite of the 
disorder in the system, can hardly be overestimated. It means that a theory can predict 
reproducible answers. If the stronger notion of thermodynamic convergence applies, 
the thermodynamic limit N + m and the replica limit n + 0 may be interchanged, and 
the replica method becomes available as an analytic tool. 
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